Mobiele menu

A phosphoproteomic approach to uncover regulators of checkpoint recovery

Projectomschrijving

Tijdens de celdeling splitst de cel zich in twee nieuwe dochtercellen. Hierbij worden de chromosomenparen gescheiden en evenredig verdeelt over de twee dochtercellen. Hiervoor is kracht nodig. Motor eiwitten kunnen deze kracht genereren en het is aangetoond dat het motor eiwit Eg5 een belangrijke rol speelt bij de scheiding van de chromosomenparen. Remmers van Eg5 blokkeren de celdeling en worden momenteel getest als mogelijke kankertherapie. Maar Eg5 blijkt niet het enige motor eiwit dat betrokken is bij de celdeling. In dit project wordt onderzocht welke andere motor eiwitten belangrijk zijn voor correcte celdeling, en hoe deze motor eiwitten precies bijdragen aan dit proces. Daarnaast zal onderzocht worden of remming van deze motor eiwitten ook mogelijkheden biedt in het blokkeren van de celdeling.

Producten

Titel: UV-induced G2 checkpoint depends on p38 MAPK and minimal activation of ATR-Chk1 pathway.
Auteur: Warmerdam DO, Brinkman EK, Marteijn JA, Medema RH, Kanaar R, Smits VA.
Magazine: Journal of Cell Science
Titel: Recovery from a DNA-damage-induced G2 arrest requires Cdk-dependent activation of FoxM1.
Auteur: Alvarez-Fernández M, Halim VA, Krenning L, Aprelia M, Mohammed S, Heck AJ, Medema RH.
Magazine: EMBO Reports
Titel: FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance.
Auteur: Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yagüe E, Monteiro LJ, Kongsema M, Zona S, Man EP, Tsang JW, Coombes RC, Wu KJ, Khoo US, Medema RH, Freire R, Lam EW.
Magazine: Oncogene
Titel: The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle.
Auteur: Shaltiel IA, Krenning L, Bruinsma W, Medema RH.
Magazine: Journal of Cell Science
Titel: Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis.
Auteur: Macurek L, Benada J, Müllers E, Halim VA, Krejcíková K, Burdová K, Pechácková S, Hodný Z, Lindqvist A, Medema RH, Bartek J.
Magazine: Cell Cycle
Titel: OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance.
Auteur: Karunarathna U, Kongsema M, Zona S, Gong C, Cabrera E, Gomes AR, Man EP, Khongkow P, Tsang JW, Khoo US, Medema RH, Freire R, Lam EW.
Magazine: Oncogene
Titel: The core spliceosome as target and effector of non-canonical ATM signalling.
Auteur: Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA, van IJcken WF, Grosveld FG, Medema RH, Hoeijmakers JH, Mullenders LH, Vermeulen W, Marteijn JA.
Magazine: Nature
Titel: Checkpoint control and Cancer
Auteur: Medema, R.H., Macurek, L.
Magazine: Oncogene
Titel: Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease.
Auteur: Domínguez-Kelly R, Martín Y, Koundrioukoff S, Tanenbaum ME, Smits VA, Medema RH, Debatisse M, Freire R.
Magazine: Journal of Cell Biology
Titel: Protein phosphatase 2A (B55alpha) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation.
Auteur: Alvarez-Fernández M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH.
Magazine: Journal of Biological Chemistry
Titel: The global proteome machine
Link: http://www.thegpm.org
Titel: Cell Cycle Checkpoints; reversible when possible, irreversible when needed
Auteur: L. Krenning

Verslagen


Samenvatting van de aanvraag

In response to DNA damage, cells can arrest cell cycle progression at several points in the cell cycle. This allows for time to repair the damage and helps prevent the propagation of the inflicted damage to subsequent generations of cells. This suppresses mutagenesis, and as such acts as an important tumor suppressive mechanism. Despite the knowledge that has been gathered on the mechanisms that enforce the cell cycle arrest and the extensive characterization of pathways and proteins that contribute to DNA repair, our current knowledge on the mechanism by which the cell cycle is re‐activated, and how this is coordinated with the completion of repair is rather limited. We have previously shown that Aurora A kinase, in complex with Bora, can activate Polo‐like kinase‐1 (Plk1), and that this kinase cascade controls the cell cycle restart following a DNA damage‐induced arrest in G2. More recently, we have identified the p53‐regulated phosphatase Wip1 as an important determinant of the capacity to restart the cell division process following activation of a DNA damage response, and found that complete inhibition of cyclin‐dependent kinase (cdk) activity severely compromises recovery competence. Here we aim to further characterize the mechanism of checkpoint recovery. This project requires expertise on phosphoproteomics, provided by the Biomolecular Mass Spectrometry and Proteomics Group at the Betafaculty of Science, combined with expertise on reverse genetic screening and checkpoint recovery, present at the Department of Medical Oncology at the University Medical Center, both part of Life Science Utrecht. Using this combined expertise, we will determine changes in protein phosphorylation that take place during recovery, and study which of those changes are dependent on Plk1, Aurora A or cdk activity. Also, we will investigate the contribution of controlled protein degradation during checkpoint recovery. We will systematically analyze the role of the proteins that we identify to be differentially phosphorylated or degraded during recovery in the regulation of the DNA damage response and the recovery process. This will allow us to identify novel regulators of checkpoint recovery and to study their role in the recovery pathway. We will study if additional post‐translational modifications occur on these proteins during recovery and study the effect of these modifications on their function. The specific aims of this project are: 1. Determine Plk1/Aurora A and cdk‐dependent phosphosites regulated during checkpoint recovery. 2. Determine the contribution of regulated protein degradation to recovery 3. Perform phosphoproteome‐based siRNA screens to identify novel regulators of recovery. 4. Study the biological functions and control of newly identified regulators. These studies will help us characterize the recovery pathway and unravel the mechanisms that cells employ to promote termination of the DNA damage checkpoint and reactivation of the cell cycle machinery. These studies will be important to understand how completion of DNA repair is coordinated with resumption of cell division. This will have a major impact of our understanding of the mutagenic effects of radiation, and might help us to optimize the efficacy of genotoxic strategies that are routinely employed in anti‐cancer therapies.

Onderwerpen

Kenmerken

Projectnummer:
91210065
Looptijd: 100%
Looptijd: 100 %
2011
2016
Onderdeel van programma:
Gerelateerde subsidieronde:
Projectleider en penvoerder:
Prof. dr. R.H. Medema
Verantwoordelijke organisatie:
Nederlands Kanker Instituut