Verslagen

Eindverslag

Samenvatting
Dit item is dichtgeklapt
Dit item is opengeklapt

Dit onderzoek naar Vroegtijdige Identificatie van de Palliatieve fase door toepassing van Tekstmining in het Huisarts Informatiesysteem (VIPTHIS) beoogde een bijdrage te leveren aan de vroegtijdige identificatie van palliatieve patiënten in de huisartspraktijk, zodat tijdig Advance Care Planning (ACP) activiteiten kunnen worden gestart. Het VIPTHIS onderzoek heeft een aantal waardevolle inzichten opgeleverd.

 

De resultaten beschrijven we aan de hand van de fases (0,1,2,3) uit het projectvoorstel, waarop daadwerkelijk resultaten behaald zijn. Publicaties nummeren we eveneens (1 t/m 5).

 

Fase 0 betrof een ‘proof of concept’ van een algoritme voor het zo goed mogelijk voorspellen van de verwachte overlijdensdatum van patiënten. Dit is niet hetzelfde als het aanwijzen van het optimale moment voor ACP, maar wel een eerste belangrijke stap op weg daar naartoe. In Medisch Contact (Publicatie 1) en in een wetenschappelijk artikel (Publicatie 2) in hebben we beschreven wat deze proof of concept opleverde: toevoeging van teksten uit het HIS verbeterde het voorspellend vermogen van het algoritme met 45% (van 20% goede voorspellingen van het levenseinde naar 29% goede voorspellingen).

 

Fase 1 is het “Gouden Standaard Onderzoek”.

Dit onderdeel was nodig omdat HIS data weliswaar data bevatten over het moment van overlijden, maar geen (gelabelde) data over het gewenste ACP moment. Om een algoritme te kunnen trainen (fase 4) is wel data nodig over de optimale timing van ACP. Daarom hebben we in deze fase twee stappen gezet: 1a) inventarisatie van 150 HIS-dossiers van overleden patiënten op zoek naar genoteerde ACP activiteiten en 1b) een dossier beoordeling van 90 HIS dossiers van 90 overleden patiënten door 90 huisartsen, op zoek naar het optimale ACP moment.

 

1a, de inventarisatie (Publicatie 3)

In totaal werden 119 patiëntendossiers geanalyseerd, van wie 55 kankerpatiënten, 28 patiënten met orgaanfalen en 36 multimorbiditeitspatiënten. In 65% van de records zijn één of meer ACP-items geregistreerd. Huisartsen documenteerden het vaakst aspecten met betrekking tot euthanasie, palliatieve sedatie, voorkeursplaats van zorg en overlijden, zorgen en hoop op de toekomst en prognose. De mediane timing van het eerste ACP-gesprek was 126 dagen voor de dood. ACP wordt vaker toegepast bij kankerpatiënten (84%) dan bij orgaanfalen (57%) en multimorbiditeitspatiënten (42%). Kankerpatiënten scoren ook het hoogst op de domeinen uitgebreidheid en frequentie van ACS-gesprekken.

 

1b Dossier analyse door huisartsen (Publicatie 4)

In totaal hebben 84 huisartsen elk drie patiëntendossiers beoordeeld (252 beoordelingen). De mediane, optimale timing voor het starten van ACP is 228 dagen (ongeveer 7,5 maanden) voor het overlijden. De mediane optimale timing voor de start van ACP werd dichter bij de dood vastgesteld bij de patiënt met kanker (87,5 dagen voor overlijden) dan bij de patiënten met orgaanfalen (266 dagen voor overlijden) en multimorbiditeit (290 dagen voor overlijden). In de meeste dossiers was de optimale timing voor het starten van ACP gerelateerd aan een i) huisartsbezoek, gevolgd door ii) een brief van andere zorgverleners of iii) een consult door de huisarts.

Kwalitatieve analyse van de toelichtingen van de huisartsen bij de gekozen APC momenten leverde diverse verdiepende inzichten op over het optimale ACP moment. Zo speelt bij kanker meestal een recente episode van diagnostiek, met een slechte prognose. Bij orgaanfalen wordt het optimale ACP moment veelal getriggerd door een recente acute situatie met SEH- of Ziekenhuisbezoek, waarna een relatief rustige periode ontstaat, met tijd voor reflectie. Bij Multi morbiditeit geven huisartsen aan dat de aanleiding voor ACP vaak is een vraag om beleid van elders uit de keten (thuiszorg, (tijdelijke) opname), of een signaal van de patient zelf en/of diens omgeving.

 

Fase 2 betrof de ontwikkeling van een neuraal netwerk voor de identificatie van het optimale ACP moment in HIS-sen. Data uit drie datawarehouses zijn ontsloten en bewerkt: die van ELAN (LUMC), MIMS (Radboudumc) en van AHON (UMCG).

Helaas bleken de datawarehouses te divers om op basis hiervan een algoritme te ontwikkelen. Dit werd duidelijk nadat een uitgebreide poging was ondernomen om de datawarehouses te harmoniseren op basis van ICPC-codes. Na diverse pogingen moest de ontwikkeling van het algoritme worden gestaakt.

De gecreëerde datasets zijn terug geleverd aan genoemde datawarehouses en zijn daar (mints begeleid door een redelijk en onderbouwd verzoek) nog steeds beschikbaar voor evt. vervolgonderzoek.

 

Doel van fase 3 was de ontwikkeling van een signaleringstool, waarmee het algoritme kon worden toegepast op HIS-sen. Doordat fase twee voortijdig werd gestaakt, zijn in fase drie vooral voorbereidende handelingen verricht, zoals interviews met 17 huisartsen, aangaande hun wensen en eisen t.a.v. een ACP-signaleringstool. Hiervan is verslag gedaan in een artikel (Publicatie 5) in “Podium voor BioEthiek”.

 

Resultaten
Dit item is dichtgeklapt
Dit item is opengeklapt

De resultaten beschrijven we aan de hand van vier fases (0, 1, 2, 3) waarop ook daadwerkelijk resultaten geboekt zijn. Bijbehorende publicaties zijn ook genummerd (1 t/m 5).

 

Fase 0 betrof een ‘proof of concept’ van een algoritme voor het zo goed mogelijk voorspellen van de verwachte overlijdensdatum van patiënten. Dit is niet hetzelfde als het aanwijzen van het optimale moment voor ACP, maar wel een eerste belangrijke stap op weg daar naartoe. In Medisch Contact (Publicatie 1) en in een wetenschappelijk artikel (Publicatie 2) in hebben we beschreven wat deze proof of concept opleverde: toevoeging van teksten uit het HIS verbeterde het voorspellend vermogen van het algoritme met 45% (van 20% goede voorspellingen van het levenseinde naar 29% goede voorspellingen).

 

Fase 1 is het “Gouden Standaard Onderzoek”.

Dit onderdeel was nodig omdat HIS data weliswaar data bevatten over het moment van overlijden, maar geen (gelabelde) data over het gewenste ACP moment. Om een algoritme te kunnen trainen (fase 4) is wel data nodig over de optimale timing van ACP. Daarom hebben we in deze fase twee stappen gezet: 1a) inventarisatie van 150 HIS-dossiers van overleden patiënten op zoek naar genoteerde ACP activiteiten en 1b) een dossier beoordeling van 90 HIS dossiers van 90 overleden patiënten door 90 huisartsen, op zoek naar het (volgens hen) optimale ACP moment.

 

1a, de inventarisatie (Publicatie 3)

In totaal werden 119 patiëntendossiers geanalyseerd, van wie 55 kankerpatiënten, 28 patiënten met orgaanfalen en 36 multimorbiditeitspatiënten. In 65% van de records zijn één of meer ACP-items geregistreerd. Huisartsen documenteerden het vaakst aspecten met betrekking tot euthanasie, palliatieve sedatie, voorkeursplaats van zorg en overlijden, zorgen en hoop op de toekomst en prognose. De mediane timing van het eerste ACP-gesprek was 126 dagen voor de dood. ACP wordt vaker toegepast bij kankerpatiënten (84%) dan bij orgaanfalen (57%) en multimorbiditeitspatiënten (42%). Kankerpatiënten scoren ook het hoogst op de domeinen uitgebreidheid en frequentie van ACS-gesprekken.

 

1b Dossier analyse door huisartsen (Publicatie 4)

In totaal hebben 84 huisartsen elk drie patiëntendossiers beoordeeld (252 beoordelingen). De mediane, optimale timing voor het starten van ACP is 228 dagen (ongeveer 7,5 maanden) voor het overlijden. De mediane optimale timing voor de start van ACP werd dichter bij de dood vastgesteld bij de patiënt met kanker (87,5 dagen voor overlijden) dan bij de patiënten met orgaanfalen (266 dagen voor overlijden) en multimorbiditeit (290 dagen voor overlijden). In de meeste dossiers was de optimale timing voor het starten van ACP gerelateerd aan een i) huisartsbezoek, gevolgd door ii) een brief van andere zorgverleners of iii) een consult door de huisarts.

Kwalitatieve analyse van de toelichtingen van de huisartsen bij de gekozen APC momenten leverde diverse verdiepende inzichten op over het optimale ACP moment. Zo speelt bij kanker meestal een recente episode van diagnostiek, met een slechte prognose. Bij orgaanfalen wordt het optimale ACP moment veelal getriggerd door een recente acute situatie met SEH- of Ziekenhuisbezoek, waarna een relatief rustige periode ontstaat, met tijd voor reflectie. Bij Multi morbiditeit geven huisartsen aan dat de aanleiding voor ACP vaak is een vraag om beleid van elders uit de keten (thuiszorg, (tijdelijke) opname), of een signaal van de patient zelf en/of diens omgeving.

 

Fase 2 betrof de ontwikkeling van een neuraal netwerk voor de identificatie van het optimale ACP moment in HIS-sen. Kennis uit fase 0 en fase 1 zou hier doorontwikkeld en gecombineerd worden, gebruikmakend van data uit drie datawarehouses: die van ELAN (LUMC), MIMS (Radboudumc) en van AHON (UMCG).

Helaas bleken de datawarehouses te divers om op basis hiervan een algoritme te ontwikkelen. Dit werd duidelijk nadat een uitgebreide poging was ondernomen om de datawarehouses te harmoniseren op basis van ICPC-codes. Daarom is de ontwikkeling in overleg met ZonMw helaas voortijdig gestaakt.

De gecreëerde datasets zijn terug geleverd aan genoemde datawarehouses en zijn daar (mints begeleid door een redelijk en onderbouwd verzoek) nog steeds beschikbaar voor evt. vervolgonderzoek.

 

Doel van fase 3 was de ontwikkeling van een geautomatiseerde signaleringstool, waarmee het algoritme kon worden toegepast op HIS-sen. Doordat fase twee voortijdig werd gestaakt, zijn in fase drie vooral voorbereidende handelingen verricht. Dit betrof enerzijds

-verkenningen met en voorbereidingen door PACMED, (een onderneming die voor diverse onderwerpen reeds algoritmes in de huisartsenzorg heeft geïmplementeerd), met/door VIP Calculus (een onderneming, gespecialiseerd in het extraheren van data uit HIS-sen),

-maar anderzijds ook interviews met 17 huisartsen, aangaande hun wensen en eisen t.a.v. een ACP-signaleringstool. Hiervan is verslag gedaan in een artikel (Publicatie 5) in het blad “Podium voor BioEthiek”.

 

Samenvatting van de aanvraag

Samenvatting
Dit item is dichtgeklapt
Dit item is opengeklapt

Advance Care Planning (ACP) verbetert zorg in de laatste levensfase. Het juiste moment kiezen om ACP te introduceren, blijkt echter moeilijk. Bestaande hulpmiddelen om huisartsen te ondersteunen in het detecteren van de palliatieve fase zijn afhankelijk van het initiatief van de huisarts en diens oordeel over de situatie. Dat initiatief wordt niet altijd genomen. In een RCT met de RADPAC bijv., werd slechts met 24% van de niet-onverwacht overleden patiënten een ACP gesprek aangegaan. Het kan jaren duren voordat je als huisarts een goede ‘antenne’ ontwikkelt voor signalering van de palliatieve fase: in een gemiddelde huisartsenpraktijk overlijden jaarlijks zo’n 15 tot 20 patiënten niet onverwacht. Het is met de huidige methoden onmogelijk om alle relevante informatie over een patiënt (specifieke karakteristieken, complete medische historie, thuissituatie) mee te nemen en op waarde te schatten.

 

Computers hebben geen last van deze beperkingen. Doel van dit project is een instrument (VIPTHIS), (door) te ontwikkelen, te implementeren en te evalueren, dat de palliatieve fase automatisch signaleert en de gebruiker het optimale tijdsframe aanwijst voor het voeren van het ACP gesprek. Er is een zeer rijke databron beschikbaar in de vorm van het Huisarts Informatie Systeem (HIS) en wij stellen voor die bron te gebruiken. Het gebruik van het HIS maakt VIPTHIS zowel generiek toepasbaar, als ultiem gepersonaliseerd.

 

Om VIPTHIS te realiseren, delen we het project op in fasen:

 

0) We ontwikkelden (okt ‘16 - okt’17) al een proof of concept van VIPTHIS o.b.v. HIS data van 1224 overleden patiënten uit 7 huisartspraktijken. Het proof of concept is al 9% preciezer in het voorspellen van het levenseinde dan de literatuur rapporteert over het voorspellend vermogen van artsen. We zien dit als een eerste opstap naar het voorspellen van het juiste moment voor ACP, wat het uiteindelijke doel is van VIPTHIS.

 

1) Het voorspellen van het levenseinde is één ding; het aanwijzen van het juiste moment voor ACP een tweede. Dit doen we door experts op het gebied van huisartsenzorg en ACP o.b.v. een aantal medische dossiers achteraf het juiste moment voor ACP te laten bepalen. De gouden standaard die zo ontstaat, biedt houvast om onze modellen (fase 2) nog beter te maken en helpt ons te bepalen welke informatie noodzakelijk is om de vertaalslag te maken van ‘levensverwachting’ naar ‘het juiste tijdsframe voor ACP’.

 

2) We trainen neurale netwerken met data afkomstig uit HISsen (miljoenen records beschikbaar via grote HIS-datawarehouses van Radboudumc, Erasmusmc en LUMC waarmee we samenwerken), waarbij we gebruik maken van 'machine learning'-, 'natural language processing'-, en 'information retrieval'-technieken. Hier komen twee modellen uit voort: model 1 voorspelt zo nauwkeurig mogelijk de levensverwachting. Model 2 is een combinatie van model 1 met de ‘gouden standaard’ uit fase 1 en geeft een optimaal “window of opportunity” om het ACP-traject te starten. Zelflerende systemen zijn in staat complexe patronen te identificeren, die voor mensen niet voor de hand liggend lijken. Het systeem wordt getraind met grote hoeveelheden data, maar kan ieder unieke geval apart beoordelen. Het neemt alle aangeboden informatie in acht en plaatst dit in het kader van alle informatie die het eerder heeft gezien. Naast de informatie afkomstig uit diagnosecodes, medicatie en bijvoorbeeld meetwaarden, pikt het systeem automatisch signalen op uit de notities van de arts en het briefcontact met medisch specialisten.

 

3) Ontwikkelen van een instrument (bij voorkeur geïntegreerd in of aangesloten op het HIS) dat in de praktijk ingezet kan worden. Deze app of ‘plugin’ op het scherm van de huisarts en/of praktijkverpleegkundige geeft een signaal zodra bij een patiënt de palliatieve fase wordt gesignaleerd, compleet met een passend tijdsframe voor het inzetten van ACP. Afhankelijk van de eisen en wensen die artsen, praktijkverpleegkundigen, patiënten en naasten (we betrekken hen bij de ontwikkeling)hebben, biedt VIPTHIS ruimte voor extra functionaliteit, bijv. als documentatiehulp of voor het delen van de resultaten van ACP-gesprekken met andere zorgverleners.

 

4) Implementeren VIPTHIS in 15 eerstelijnslocaties (groepspraktijken of gezondheidscentra), verspreid over 5 regio’s (Zwolle, Nieuwegein, Rotterdam, Leiden, Nijmegen). De implementatie bestaat niet alleen uit het installeren van de ‘signaleringstool’ in de huisartsenpraktijk. We bedden VIPTHIS in in een ACP trainingsprogramma voor huisartsen (met NHG) en praktijkverpleegkundigen (met Viaa Hogeschool).

 

5) Kwantitatieve en kwalitatieve proces- en effectevaluatie van VIPTHIS. De hypothese is dat hulpverleners vaker en eerder ACP gesprekken voeren, dat de procedure homogener wordt en dat de zorg meer passend en effectief blijkt (o.a. ervaren door de patiënt en zijn naasten).

 

Het project wordt uitgevoerd door een breed samengesteld team (4 UMCs)en begeleid vanuit onder anderen het NHG en de Nederlandse Patiëntenvereniging.

Naar boven
Direct naar: InhoudDirect naar: NavigatieDirect naar: Onderkant website